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Predicting phenotypes from genomes is a major goal in genetics, but for most
complex phenotypes, predictions are largely inaccurate. Here, we propose a
more achievable alternative: relative prediction of phenotypic differences.

Even with incomplete genotype-to-phenotype mapping, we show that it is
often straightforward to determine whether an individual’s phenotype
exceeds a threshold (e.g., of disease risk) or which of two individuals has a
greater phenotypic value. We evaluated prediction accuracy on tens of thou-
sands of individuals from the same family, same population, or different
species. We found that the direction of a phenotypic difference can often be
identified with >90% accuracy. This approach also helps overcome some
limitations in transferring genetic association results across populations.
Overall, our approach enables accurate predictions of key information on
phenotypes — the direction of phenotypic difference — and suggests that more
phenotypic information can be extracted from genomic data than previously

appreciated.

A key goal in genetics is to predict phenotypes from genomic data.
Such predictions are pivotal for assessing disease risk'?, understanding
the genetics underlying adaptation**, optimizing genetic engineering
outcomes’, reconstructing the traits of extinct species®, and more.
However, our current ability to predict phenotypic values from genetic
information, for example by using polygenic scores (PGS), is restricted
by several factors. These include environmental effects on the phe-
notype, gene-environment interaction effects, the high polygenicity of
many phenotypes, the limited ability to identify causal noncoding
variants and quantify their effects, and the lack of power to detect
small-effect loci**.

Given the limitations associated with predicting precise pheno-
types, we suggest here a more attainable objective: predicting only the
direction of phenotypic difference. Namely, rather than striving to
predict the precise phenotypic value of an individual, we aim to predict
whether this individual has (or will have in the future) a larger or
smaller phenotype than another individual. To illustrate, consider a
scenario where one is interested in determining the probability that an
offspring will be taller than their 170 cm tall parent. Considering that a
PGS predicts the offspring will be 180cm tall, what is the probability

that the offspring will indeed be taller than their parent? Importantly,
the same approach could also be applied to examine if the tested
individual has a higher phenotypic value than (i) the population aver-
age, (ii) an individual confirmed to have the phenotype (e.g., an indi-
vidual with the disease), or (iii) a threshold of interest (e.g., the
unphenotyped crop will produce at least 10% more yield than another
crop). We previously implemented a simplified version of this
approach to reconstruct Denisovan anatomy using gene regulatory
data, and validated the method on Neanderthals and chimpanzees. We
found that it reached over 85% accuracy in predicting the direction of
phenotypic differences®.

Despite being less informative than a precise phenotypic value,
the direction of phenotypic difference is often the crux of pheno-
typic comparisons®>~°. Thus, a method to evaluate the probability
that the tested individual has a higher/lower phenotypic value, or
that the phenotype of two individuals differs by at least a pre-
determined constant, could provide important insights into a wide
array of applications (see' for introduction to the concept of ‘local
false sign rate’ in statistics). These include studies that aim to (i)
improve a phenotype, such as in agricultural research targeting
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increased crop yield’, or preimplantation genetic testing attempting
to estimate the probability that choosing the embryo with the lowest
risk score would indeed decrease the individual disease
susceptibility®’; (ii) study evolutionary changes over time by, for
example, identifying selective pressures pushing a phenotype in a
particular direction over time®"; (iii) predict if an individual’s dis-
ease risk exceeds a baseline (e.g., the population average or a set
clinical threshold) or that of other individuals with the disease; and
(iv) predict and manage the response of a species to environmental
changes, medications, or other interventions. Despite these and
other important applications, we currently lack the ability to esti-
mate how likely we are to correctly predict the direction of pheno-
typic difference from genomic information.

Here, we explored the feasibility of using currently available
genotype-to-phenotype information to predict which individual has
a greater phenotypic value. We compared the sum of the effects of
the loci known to contribute to the phenotype, to the range of the
potential effects of unknown genetic and non-genetic contributors.
We studied this ratio of known-to-total effects through two inde-
pendent branches of investigation: (i) formalizing a model to
delineate the scenarios in which accurate predictions can be
achieved, and (ii) evaluating performance in real-world empirical
data from humans and other species, examining a wide range of
levels of genetic divergence between individuals. Our findings
underscore the known-to-total ratio as a high-fidelity and intuitive
estimator of prediction accuracy. This approach allows us to identify
cases where we can reliably discern the individual with the greater
phenotypic value. Importantly, this is possible even in cases where
the proportion of variance in the trait explained by known genetic
effects is small. Our study suggests that it is possible to identify the
pairs of individuals for which high-accuracy predictions can be made,
and that more phenotypic information can be reliably extracted from
a genome than perhaps intuitively expected.

Results

Approach

We investigated what genomic information is needed to predict the
direction of phenotypic difference between two individuals, and
the conditions under which this prediction is accurate. We assume
that one individual has been phenotyped (hereafter, phenotyped
individual) and the other has not (hereafter, unphenotyped
individual).

We distinguish between two groups of contributions to the phe-
notype. We refer to the first group as known effects, representing a
chosen set of genotyped variants predictive of the phenotype (e.g.,
variants contributing to a PGS). The second group is the unknown
effects, which include loci or environmental factors whose level of
association with the phenotype is undetermined (Figure 1a). We make
a prediction on the direction of phenotypic difference by summing up
the contribution of the known effects and determining whether the
unphenotyped individual has a larger or a smaller sum than the phe-
notyped individual. We ignore loci where the two compared indivi-
duals have the same genotype, because only loci where the two
individuals differ in their genotypes could contribute to the pheno-
typic difference (Fig. 1b, c). This procedure is equivalent to computing
the difference between the PGS of the two genomes, and using the sign
of this difference to predict the direction of the phenotypic
difference’™. In the following sections, we investigated the conditions
affecting the probability that a prediction based only on the known
effects matches the true direction of phenotypic difference (hereafter,
prediction accuracy or P). For simplicity, we focus on predicting whe-
ther the unphenotyped individual has a higher phenotypic value than
that of the phenotyped individual. However, the same approach could
be applied to test if the difference between the phenotypes exceeds a
predetermined threshold of interest.

Modeling the conditions needed to predict the phenotypic
direction
We explored the problem from two different perspectives, statistical
genetics and evolutionary genetics, which provide different tools and
intuitions. From a statistical genetics perspective, we considered the
partitioning of the phenotypic variance into that generated by known
and unknown effects. For the evolutionary perspective, we modeled
the approach as a random walk, where each step is an effect on the
phenotype in one or the other direction. We define the effect size of a
locus as the average difference in predicted phenotype between the
genotypes of the two individuals. For example, if the phenotyped
individual has a genotype that increases height by 3 mm (relative to a
reference), and the unphenotyped individual has another genotype,
which decreases height by 1 mm, then we consider the effect size of
that locus to be +4 mm (Fig. 1a). The effect size of loci with the same
genotype in the two individuals is O, and these loci are therefore
ignored throughout this work. Our model makes the simplifying
assumptions of additivity and no epistasis® (in the empirical section,
where we test our approach, these simplifying assumptions are eval-
uated). The direction of the sum of known effects (i.e., whether the
displacement is above or below the x-axis in Fig. 1b and the blue dot in
Fig. 1d) is our prediction of the direction of the phenotypic difference
(Fig. 1c). If the remaining steps of the random walk (i.e., those of the
unknown effects) are such that the final displacement (i.e., true phe-
notype, yellow points in Fig. 1d) is still above O, our prediction is cor-
rect. Otherwise, i.e., if the remaining steps push the displacement
below O, our prediction based on the known effects is incorrect.
Naturally, the larger the sum of known effects is, the less likely it is for
the final displacement to end on the opposite side of the x-axis.
Various factors have the potential to affect prediction accuracy:
the total number of loci affecting a phenotype, the fraction of known
effects, the distribution of effect sizes, and more. However, our ran-
dom walk perspective suggests that all of these factors amount to only
two aspects of the walk that ultimately determine prediction accuracy.
The first aspect is the vertical displacement of the sum of the known
effects (blue dot in Fig. 1d; equivalent in statistical genetics to the
difference in PGS). Namely, the further above or below 0 we “traveled”,
the less likely it is that the unknown effects would push the final
position to the other side of the x-axis. The second aspect is the var-
iation of the overall potential sums of the unknown effects (i.e., the
variation in the displacements generated by the random walk of the
unknown effects, yellow region in Fig. 1d; equivalent to the proportion
of variance in phenotypic differences that is unexplained by PGS). The
smaller this variation is, the less likely the unknown effects are to push
the final position of the walk to the other side. We propose here that
prediction accuracy can be characterized by the ratio between these
two quantities. Denoting the sum of the known effects as A and the
standard deviation of the unknown effects as g, we define the known-
to-total ratio, k, as

o= Al 1

IETA

In Methods, we show that the probability that a prediction for the
direction of the phenotypic difference is indeed correct (i.e., the pre-
diction accuracy) can be formulated as a simple function of k,

p= cD(L), @)

1-«

where @(-) is the standard normal CDF. We provide two derivations —
one from the viewpoint of random walks and the other from the
viewpoint of statistical genetics, which also enabled us to model
shared genetic and environmental components in siblings, and to
formulate the probability that the difference between two individuals
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Fig. 1| Schematic of the approach to predict the direction of phenotypic dif-
ference. a We start with a phenotyped individual and an unphenotyped individual.
We consider the known and unknown effects contributing to (or associated with)
the phenotype of interest. Known genetic effects on the phenotypic difference are
in blue (measured in units of the phenotype), unknown genetic and non-genetic
effects are in yellow. Cases where the contribution is identical between the two
individuals (and therefore do not affect the phenotypic difference) are in gray.

b Only the known non-zero effects are used to predict the phenotypic difference
between the individuals. The sum of the known effects can be thought of as the final
position of a random walk with step sizes and directions corresponding to the
effect sizes. ¢ The direction of the total sum of the known effects is used to make a
prediction of the direction of phenotypic difference between the phenotyped and
unphenotyped individuals. If the sum of the known effects between the individuals

Effects on the phenotype

b c
Prediction of phenotypic direction
30
Unphenotyped Phenotyped
individual individual

>

Phenotypic difference
(phenotyped vs unphenotyped)
o

)
S

Known effects on
the phenotype

Prediction accuracy

+ X
Truth: >'R
(prediction )
X
Truth: <
X (prediction incorrectX)

is positive, we predict that the phenotypic value of the unphenotyped individual is
larger than the phenotyped individual (and the opposite prediction if the sum is
negative). d Modeling prediction accuracy using random walks. The curves repre-
sent random walks where each step is an effect size. The blue curve shows the
known effects of a specific random walk, and the sign (positive or negative) of the
blue point at the end of the walk is the predicted direction of phenotypic differ-
ence. The yellow curves show potential random walks of the unknown effects
(genetic and environmental). In this example, effect sizes were drawn from a
standard normal distribution. For a correct prediction of the direction of the
phenotypic difference, the sum of the known effects (blue point) and the true
phenotypic difference (yellow points) need to be on the same side of the x-axis
(both below or both above).

exceeds a certain threshold of interest (see Methods). We then
explored how different factors affect the distribution of k, by deriving
the distributions under simplified conditions (Supplementary Infor-
mation) as well as using simulations. We simulated pairs of individuals
with random known and unknown effects and arbitrarily treated one
individual as phenotyped and the other as unphenotyped (see Meth-
ods). Based on these simulated effects, we computed « for each pair of
individuals and determined whether the prediction is correct. We
conducted these comparisons for different ratios of known to
unknown effects, as well as for different effect-size distributions.

We found an agreement between the theoretical expectation for
prediction accuracy and the simulated results across all values of x
(Fig. 2a), as well as across different effect-size distributions (Fig. Sla-b).
As expected, predictions on pairs with higher x values showed higher
prediction accuracy. For example, for pairs of individuals with k > 0.62,
prediction accuracy was P > 0.95. High values of x are more common
when the fractions of known effects are larger (Fig. 2b), but we showed
analytically (Supporting information) and with simulations (Fig. Slc, d)
that the underlying effect-size distribution does not affect the k dis-
tributions (Fig. Slc, d). As expected, adding a threshold c for the
phenotypic difference in our prediction reduces prediction accuracy

(Fig. 2c). However, the reduction in prediction accuracy compared to
the no-threshold prediction becomes substantial only when the
threshold c is very large. For example, for a threshold ¢ = 0.1 (0.1
standard deviations of the phenotypic values), the reduction in pre-
diction accuracy is 1.5-5.8% for the (large) range of A values we
simulated, whereas this reduction is 21-53% for the threshold c =1 (a
full standard deviation).

We have so far assumed that there is no bias in choosing which
effects are known and which effects are unknown. However, many
detection methods (e.g., quantitative trait loci mapping or GWAS) have
an ascertainment bias, where loci with larger effects are more readily
detectable’. We therefore analyzed scenarios where the known effects
are those with the largest effects (e.g., largest § values in GWAS data,
see Methods). As before, we found that x is a precise descriptor of
prediction accuracy (Fig. S2). However, k values tend to be much
higher than in the unbiased scenario (Fig. 2d). Therefore, if the known
effects tend to be the largest effects, prediction accuracy could
be high. For example, with 10% of effects known in the unbiased sce-
nario, none of the simulated pairs of individuals had prediction accu-
racy >0.95 (k > 0.62); however, in the scenario where the largest
effects were known, 6.5% of the pairs reached this prediction accuracy
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aSimulated prediction accuracies for various k values (grouped into equally spaced
bins), for different proportions of the known vs. unknown effects (10%, 50%, and
90% of effects known). Effect sizes were drawn from a normal distribution. In gray is
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interval, and only data points with error bars > 0.01 are shown. b The distribution of
k values for the case where the known effects are randomly sampled. The vertical
line denotes the k values required for prediction accuracy of P> 0.95 (k = 0.62;
Eq. 2). ¢ The effect of predicting phenotypic direction above a threshold c of
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phenotypic difference (Eq. (7)). For each curve, We simulated 107 pairs of polygenic
scores, each distributed normally with zero mean and variance of > = 0.1. The y-axis
shows the probability that y; > y, + ¢ (y; is the trait value of the individual with the
higher score) vs the score difference d (x-axis). Circles show simulation results and
lines show theory based on Eq. (7). Each curve (different colors) corresponds to a
different value of the gap c (legend). Units are in standard deviation of the phe-
notypic values. d The distribution of k values for the case where the known effects
are those with the largest effects. The vertical line denote the k values required for
prediction accuracy of P>0.95. In panels (a, b, d) 10,000 effect sizes were drawn
from a standard normal distribution to represent the known and unknown effects
on the phenotype.

(Fig. 2b, d, intermediate blue). Thus, if the known effects tend to have
larger effects, high prediction accuracy can be achieved even in cases
where these loci explain only a small proportion of the overall phe-
notypic variance.

In sum, we found that the known-to-total ratio (k) captures the
factors that affect the probability of correctly predicting which indi-
vidual has the higher phenotypic value (and that they can be used to
predict if the difference is higher than any defined threshold). The x
estimator could thus be used as an intuitive statistic to (i) evaluate
prediction accuracy, and (ii) identify individuals or pairs of individuals
for which high-accuracy predictions could be made, even when
genotype-to-phenotype data is limited.

Identifying which individual has the higher phenotypic value in
real-world data

To investigate the relationship between k and prediction accuracy in
empirical data, we compared pairs of individuals with different levels
of genetic divergence. We considered pairs of individuals from the UK
Biobank'® from either the same family or the same population. For each
pair, we investigated six phenotypes: height, body mass index (BMI),
metabolic rate, blood pressure, hip circumference, and bone density.
For each phenotype, we selected loci that significantly contribute to
the phenotype based on a GWAS that excluded the individuals we

tested. The effect sizes generated in this GWAS were then used to
compute A as the difference between the PGS of the two individuals
(see Methods). In each comparison, we also computed k. For the within-
family comparisons, we examined all 10,597 pairs of same-sex siblings
in the dataset. For within-population comparisons, we randomly
sampled 20,000 individuals (10,000 females and 10,000 males) who
self-identified as White British and had Northwestern European genetic
ancestry (hereafter labeled for brevity as ‘European’, see Methods,
Fig. S6). We then examined all pairwise same-sex comparisons
among them.

Across the six phenotypes, higher k values reflected higher pre-
diction accuracy (Fig. 3a-b), with a relationship that tightly followed
the theoretical expectation (Eq. (4)). Importantly, this is maintained
across both levels of genetic divergence between individuals (family-
level and population-level), suggesting that k captures the key aspects
determining the ability to predict phenotypes. There is an intriguing
exceptions to this: predictions of blood pressure differences hold at
lower «k values, but perform badly at higher x values. This possibly
reflects intervention-induced phenotypic changes (see below).

Our approach also allowed us to estimate the proportion of
individuals for whom high-accuracy predictions can be achieved. For
example, for 5% of pairs from the European group, k values for bone
mineral density are 0.4, and we can therefore predict which individual

Nature Communications | (2025)16:6898


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-62355-z

a Siblings European c Transferability
1.0 1.0 1.0
>
) > >
® 0.9 % 0.9 % 0.9
5 o e
o =1 =1
O 0.8 —— Body-mass index Oos Oog
© —— Blood pressure (systolic) g ! % .
< —— Heel bone mineral density c c
-g 0.7 —— Height 007 00.7 »
L —— Hip circumference ° © — European pairs
8 0.6 » Metabolic rate o 0.6 o 0.6 — East As\an. pairs
& ‘:‘Q. Theoretical expectation v o — African pairs
0.5 ¥ o o Theoretical expectation
0.5 0.5
ok q )
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Known-to-total ratio (k) Known-to-total ratio (k) Known-to-total ratio (k)
d e f
0.20 0.20 0.20
0.15 0.15 0.15
C C C
] o o
h= = £
S 0.10 S 0.10 S 0.10
% % a
o o o
j<4 <4 <
o o A o
0.05 0.05 0.05
\\
0.00 0.00 0.00
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Known-to-total ratio (k)

Fig. 3 | Predictions of the direction of phenotypic difference in humans. a-c The
relationship between the known-to-total ratio (k) and prediction accuracy. Each
data point shows the proportion of correct predictions for pairs of individuals in a
certain k bin. The theoretical expectation (Eq. (4)) is shown in gray. a Pairwise
comparisons of siblings from the UK Biobank for six phenotypes (n = 11194).

b Pairwise comparisons of individuals from the European group (self-identified
White British with Northwestern European genetic ancestry) from the UK Biobank
for the same six phenotypes (n = 10000). ¢ Pairwise height comparisons of

Known-to-total ratio (k)

Known-to-total ratio (k)

individuals from the same population, either European (n = 10,000), East Asian
(n = 897) or African (n = 1546) (populations defined in Fig. S6), using GWAS gen-
erated from a European-ancestry group in Yengo et al.”’. d-f The distribution of
values for all pairwise comparisons. Each panel corresponds to the panel above it.
Only data points with >100 pairwise comparisons are shown, and in (d-f) all
pairwise comparisons are shown. Error bars show 95% confidence interval, and only
data points with error bars >0.01 are shown.

has higher bone mineral density with 75% accuracy (i.e., threefold more
likely to predict correctly than incorrectly; Figs. 3e and S4b). For
height, where a larger fraction of loci contributing to the phenotypic
variance is known, the same prediction accuracy can be achieved for
one in four pairs. Notably, we can predict the taller individual with 90%
certainty for 3% of the pairs (Fig. S4). Importantly, the percentage of
pairs for which high-accuracy predictions can be attained increases
with increasing genetic distance (k distributions are shifted to the right
with higher divergence between pairs in Fig. 3d, e). For example, in 3%
of sibling pairs, we can predict which sibling is taller with 85% certainty,
while between unrelated individuals from the European group this
increases to 8% of pairs (Fig. S4a, b). It remains to be determined to
what extent these results are affected by population stratification'” or
other potential factors.

One of the most intriguing uses of phenotypic inference is its
potential to predict an individual’s susceptibility to a particular dis-
ease. To explore this, we tested our ability to identify the individual
with the disease in a pair of individuals where one is healthy and the
other is reported to have the disease. Here too, the empirical results
mostly align with the theoretical expectation (Fig. S5). However, unlike
all other analyses, at higher k values (k > ~0.4), the empirical results
started to deviate from the theoretical expectation (Fig. S5a). We have
not been able to pinpoint the underlying driver of this phenomenon.
One plausible explanation is that in these comparisons, higher k values
reflect instances where one of the individuals is indeed more likely to
develop the disease, but early signs of the disease or family history
prompted some intervention that led to exclusion from the disease
group. Potential support for this can be seen in the context of the
blood pressure phenotype. At higher k values, predictions start
diverging from the theoretical expectation both in the within-
population analysis of blood pressure (Fig. 3b), as well as in the

disease analysis of hypertension (Fig. S5a), where for high k values
prediction accuracy approaches 0 and thus our predictions are not
even random, but systematically wrong. This behavior may indicate a
negative correlation between high x values and the disease, possibly
reflecting intervention-induced phenotypic changes that specifically
occur in individuals with a higher likelihood of elevated blood pres-
sure, thereby altering the predictive outcome. We examined whether
antihypertensive medication, as reported in the UK Biobank, are over-
represented in the control individuals in high k individuals, but we did
not find support for medication-use as an explanation of the phe-
nomena; this however, does not rule out other interventions, such as
diet or life-style alterations. Nevertheless, for most cases, where k
values are not extreme, it is possible to generate accurate estimates of
prediction accuracy. This could perhaps be clinically relevant when the
unphenotyped individual has a higher probability of developing the
disease relative to an individual known to have the disease.

A major concern in GWAS is its limited transferability across
populations. PGS computed using data from one population often
perform substantially worse when applied to other populations'®. To
test whether this phenomenon affects our approach, we evaluated the
relationship between k and prediction accuracy using GWAS con-
ducted on individuals with European ancestry, but predicting pheno-
types between pairs of individuals with East Asian or African Ancestry
(populations defined in ref. 19). As expected, we observed lower k
values for these comparisons relative to the k distribution in Europeans
(between East Asian pairs: 33% lower on average, and between African
pairs: 57% lower on average, Fig. 3f), highlighting that prediction
accuracy in non-European populations is worse than in Europeans,
owing to the smaller fraction of the phenotypic variance explained by
European-ancestry GWASs'®', This, in turn, may lead to inequality in
future gains from genomics-based medicine. Nevertheless, here too,
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we observed good agreement with the theoretical expectation for the
relationship between k and prediction accuracy (Fig. 3c). Thus, while
fewer usable SNPs and increased noise in effect size estimation lead to
fewer pairs with high-accuracy predictions, the ability to robustly
estimate prediction accuracy is maintained.

In summary, we found that: (i) given a pair of individuals, it is
possible to accurately estimate the chances of correctly predicting
which individual has the greater phenotypic value, and (ii) even for
phenotypes with limited genotype-to-phenotype data, some pairs
have sufficiently high known-to-total ratios (k) to enable the identifi-
cation of the individual with the greater phenotypic value. Two
important implications of these findings are that we can (i) select the
subset of pairs of individuals for which we can make high-confidence
predictions, or (ii) given a pair of individuals, select the subset of
phenotypes for which we can make high-confidence predictions.

Impact of directional selection on predictions between popula-
tions and species

In the model above, we have not addressed the role of selection.
Directional selection most likely has little effect on the within-
population UK Biobank comparisons, but may play a more central
role when more divergent genomes are compared. In this section, we
extend our model to include directional selection and examine pre-
dictions in divergent populations and species (see Discussion for the
potential effects of negative and stabilizing selection).

Until now, our model assumed that the effects have an equal
probability of increasing or decreasing the phenotypic difference.
Under directional selection, the phenotype of a lineage is typically
pushed towards a new optimal value. The directions of effects of that
lineage relative to the ancestral lineage are more likely to be in the
direction of this optimum?®. Thus, to model the case that directional
selection has shaped the divergence between the two compared gen-
omes, we introduced biased effects into our model. We considered the
case where selection is stronger for larger effect sizes. In other words,
effects are more likely to be aligned with the direction of selection than
with the opposite direction, and the probability of alignment increases
with the size of the effect and the strength of selection.

To model this, we introduced into the random walk a bias that
favors one direction over the other and is stronger with larger effects
(Methods). In this model, we observed an improvement in prediction
accuracy relative to the neutral case in two aspects: (i) the proportion
of pairs of individuals with high « values also increases with stronger
selection (Fig. S3); (ii) prediction accuracy is higher for any given value
of k (Fig. 4b). Both improvements increase with stronger directional
selection. Consequently, under directional selection, high-accuracy
predictions can be achieved more often and with fewer known effects.

These results suggest that more divergent lineages, where direc-
tional selection might have played a more central role, would tend to
show higher prediction accuracy. To investigate this, we explored
genotype-to-phenotype datasets of more divergent lineages. We tes-
ted three datasets that mapped quantitative trait loci (QTL) separating
pairs of populations of sticklebacks?, daisies”, and mice”. Then, we
tested to what extent these QTLs predict the true direction of phe-
notypic change between population pairs. The stickleback dataset
included four freshwater populations that diverged from a common
marine ancestor less than 12,000 years ago?. We analyzed the 27
morphological phenotypes in the dataset, with 1-2 QTLs reported per
phenotype, and found that even with only 1-2 known loci, prediction
accuracy was 63%-75% (depending on the pair of populations com-
pared; Fig. 4c).

In the daisy dataset, we analyzed 1-5 QTLs for 12 phenotypes
that differ between two species of daisy’’. We found a prediction
accuracy of 92%, with 11 out of 12 phenotypes predicted correctly
based on these known effects (Fig. 4c). The mouse dataset included
growth rate and weight phenotypes of Gough Island vs. wild-type
mice over 16 developmental stages®, with 8-11 QTL per phenotype.
Prediction accuracy was 100% (Fig. 4c). Interestingly, this perfect
prediction accuracy is achieved despite the fact that in some devel-
opmental stages, the joint effect of all known effects explains as little
as 6% of the variance in weight and 3% of the variance in growth rate.
In addition, in all three datasets, the single largest-effect locus was
sufficient to predict the direction of phenotypic difference with high
accuracy (63%-75% for sticklebacks, 92% for daisies, and 75%
for mice).

We also revisited our previous study that predicted phenotypic
differences between Neanderthals and modern humans and between
chimpanzees and humans®. These predictions were based on DNA
methylation changes separating the lineages and were made only for
phenotypes where all known effects pointed in the same direction of
phenotypic change, thus filtering for phenotypes with higher x values.
Prediction accuracy for 33 Neanderthal phenotypes and 22 chimpan-
zee phenotypes was 88% and 91%, respectively®. Interestingly, we
observed similar patterns in our more recent study comparing human
and chimpanzee gene expression in human-chimpanzee hybrid cells,
with an accuracy of 81%*.

Overall, these datasets represent a diverse range of phenotypes,
species, divergence times, and genotype-to-phenotype association
methods. While we most often do not know the exact nature of the
selection processes that have shaped the genetics of organisms, our
results suggest that when comparing divergent genomes, we can
achieve relatively accurate prediction of the direction of the pheno-
typic difference with very few large-effect loci.
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Discussion

Traditional quantitative genetic studies attempt to predict the pre-
cise phenotypic value of an individual. Here, we explored a more
modest approach, whereby only the direction of phenotypic differ-
ence is predicted. Our goal was to develop a model for prediction
accuracy under various conditions and to test it on empirical data.
We found that prediction accuracy is affected by two main factors:
the sum of known effects, and the variance of the sums of the
unknown effects. We formulated the relationship between these two
factors as k, from which the prediction accuracy can be easily esti-
mated. The « statistic allows us to identify pairs of individuals where
the direction of phenotypic difference could be confidently pre-
dicted. This statistic is not affected by ascertainment bias, the level of
genetic divergence between individuals, or transferability problems
with the data. Pairs for whom accurate predictions can be made are
more common when (i) more information is known about the genetic
basis of the phenotypic variation, (ii) the phenotype was more
strongly affected by positive selection, (iii) large-effect loci are more
likely to be known.

Our model has several limitations. (i) We assumed additivity of
effect sizes and did not incorporate epistasis. Although previous stu-
dies have shown that variation in complex traits within species is
mostly additive®?, the assumption of additivity may not hold for
some phenotypes®?’, which is likely to reduce prediction
accuracy’® . For example, gene-environment interactions may make
it difficult to estimate the standard deviation of the unknown effects
when environmental contexts change between pairs of individuals. We
did not observe that the relationship between k and prediction accu-
racy is different for different phenotypes (Fig. 3b, with the exception of
blood pressure for high k values), but for phenotypes that are expec-
ted to have substantial gene-environment affects it will be important to
evaluate the variation in estimation of o across, for example, different
subsets of the population®*2 (ii) In our model, we did not separate
between unknown effects that contribute to the phenotype (e.g.,
undetected loci) and unknown effects due to noise in the estimation of
known effects (e.g., measurement errors or unaccounted factors such
as age and socio-economic status). (iii) Finally, we model environ-
mental effects as part of the unknown effects, i.e., reflecting the same
dynamics. However, in phenotypes that evolve under stabilizing
selection in the face of shifting environments, genetic and environ-
mental effects can have different or opposing trends***. Despite these
limitations, testing our approach on real data suggests that our current
model captures many of the main factors that affect predictions of
phenotypic direction.

The prediction accuracy can also be theoretically computed via
methods from animal breeding, such as GBLUP* or BayesCr®, which
provide the posterior variance of the genetic component of the trait in
the individuals considered, given the genomic markers. Such approa-
ches would also account for relatedness between the pair of indivi-
duals. However, the posterior variances of the genetic component
would not directly provide an estimate for prediction accuracy when
considering predictions of the direction of phenotypic difference. The
approach presented above may be adapted to provide predictions of
the direction of phenotypic differences using such animal breeding
frameworks as well. Our approach could be extended by testing mul-
tiple threshold c values, thereby producing a probability distribution
over various phenotypic ranges and yielding a more quantitative
prediction.

To model selection, we used an approach where loci are affected
by selection in proportion to their effect sizes. While this is the
general case, selection often follows more complex dynamics®. For
example, Hayward and Sella® investigated temporal evolutionary
dynamics of a rapid adaptation phase followed by a prolonged sta-
bilizing selection phase. This study showed that in the long term,
phenotypic variation is dominated primarily by small and moderate

effect sizes, and that the larger the effect size of a locus that sepa-
rates the two groups, the more likely it is to reflect the overall phe-
notypic difference between them®. This could further explain the
high prediction accuracy reached in our between-species compar-
isons, where the few known large-effect loci explain a small percen-
tage of the overall phenotypic difference, but are very predictive of
the direction of phenotypic difference.

Other types of selection could also affect predictions. For exam-
ple, negative selection is expected to reduce the number of loci whose
genotype differs between two individuals, thus decreasing both the
known and unknown effects. If it disproportionately affects larger-
effect loci it might reduce the relative contribution of the known
effects, thus shifting k values towards lower values, resulting in lower
prediction accuracy. Unlike directional selection, this is not expected
to affect the relation between x and prediction accuracy. Stabilizing
selection, for a similar optimum on the two genomes, may also reduce
prediction accuracy because it can reduce the variance contribution of
shared loci affecting the phenotype®.

The approach we presented evaluates the extent to which a key
feature of a phenotype — its direction — can be predicted from
genomic data. Given the currently limited ability to quantitatively
predict phenotypes from genotypes?, our approach suggests that
qualitative prediction of phenotype direction is often feasible. While
there is still much to explore with regard to the applicability of this
approach to various data, its capability to robustly estimate predic-
tion accuracy and to identify individuals and phenotypes for which
accurate predictions can be achieved, suggests that more phenotypic
information can be extracted from genomes than previously
appreciated.

Methods
Formal model for prediction accuracy
We consider a pair of individuals, one phenotyped and the other
unphenotyped, with genomes that diverge at n loci that affect a certain
phenotype. We denote the (absolute value of the) differential effect of
these loci as ¢;, (i =1, ..., n) which is the relative contribution of locus i
to the difference between the phenotypes of the two individuals
(Fig. 1a). Each effect of a locus where the individuals differ in their
genotype either increases the phenotypic difference in the direction of
the phenotyped individual, arbitrarily denoted as d; = 1, or in the
direction of the unphenotyped individual, denoted as d; = — 1. The sum
of the known effects is A= Y"1, d;e; (Fig. 1b). The sign of A is our
prediction for the direction of the phenotypic difference (Fig. 1c).

We consider additional m unknown effects on the phenotype, and
denote them as random variables Xj, . . ., X,,. For the most part of this
work (but see simulations with selection below), we assume that
Xy ..., X are independent random variables that attain one of two
values, E; or, — E;, with equal probability, i.e. X; ~ 2E;(Bernoulli}) — 1),
for j =1, ..., m. We assume that the Ejs are identical independent
random variables with an effect-size distribution ¥, which means that
Xy, ..., X are also identical and independent. Each unknown effect has
some contribution to the phenotype, and it can work to either increase
or decrease the phenotypic difference. We denote the sum of the
unknown effects as Q= i, X;. Following the definitions in Eq. (1), we
denote the variance of Q as ¢

The true phenotypic difference is D = A + Q, the sum of both
known and unknown effects. Our prediction is correct if the signs of A
and D are the same; otherwise, our prediction is incorrect. We define
the ‘prediction accuracy’ P as the probability that the signs of A and D
are the same.

Mathematical relationship between k and P

Without loss of generality, let us assume that A > 0. Prediction
accuracy is the probability that the true phenotypic difference
is positive, P=Prob(A+Q>0). Reformulating this by plugging in
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Eq. (1) to replace A, we have

P:Prob(o> —fi):l—Prob(Qs —%) 3)

Notably, Q is a sum of identical independent random variables, and
therefore, assuming that the effect size distribution Y has a finite var-
iance, we can apply the central limit theorem and show that Q is
approximately normally distributed. Q has a mean of zero because
each of the random variables X; has a zero mean. We can now use the
CDF of Q, Fo(x)=®Z) (where @( -) is the standard normal CDF) to
explicitly compute the prediction accuracy,

PZI_FQ<_ 1K—OK> :FQ<1K—0K) =q)(1l—<K>' )

Note that because ;. = 12|, we also have P= ® (@) . Therefore, %! could

be used alternatively to k as a statistic describing prediction accuracy,
although « is more readily interpretable under the perspective pre-
sented in Fig. 1.

Alternative derivation. We can also derive this result using standard
notations in statistical genetics. As before, we consider that a pheno-
type is measured in normalized units, i.e., y ~ N(O, 1). The PGS of an
individual p is then distributed as p - N(0, r*), where * is the proportion
of the phenotypic variance explained by the PGS. We denote the
combined non-measured genetic factors and non-genetic factors
affecting the trait as i, which is also the residual of the regression of the
trait on the PGS. We can thus write y = p + n. We assume p and n are
independent and n ~ N(O, 1 - r*). Next, we consider two unrelated
individuals with computed PGS p; and p, such that p; > p,, with resi-
duals n; and 17, respectively (we assume that ; and 3, are independent
because the individuals are unrelated). Denoting the difference in PGS
as d = p; — p,, and using d to predict the direction of phenotypic
difference, the prediction accuracy is therefore P = Prob(y; > y,), where
y1and y, are the true phenotypic values of the two individuals. We can
reformulate this probability as P = Prob(n, — n; < p1 — p»), and therefore
P = Prob(n, - m < d). We denote n/=n, — n;, and because n; and n, are
each normally distributed with variance 1 - r* and zero mean, we have
n’ ~ N(0,2(1 - r?)). We can now observe that:

P=Prob(y,>y,)=Prob(n' <d)=® (

V20-ry))

Reformulating Eq. (1) with the notation of this section (i.e., |A| = d and
0=1/2(1 — r?), because 2(1 - ) is the variance of the differences of the
unknown effects), we have k = d , and therefore

d+/2(1-r2)

d

K d+20-7) d )

— ___d — 2
1-x 1 Ty e V21 —-r?)

showing that equations (4) and (5) are equivalent.

We can now use this formulation to derive the probability for
correctly predicting the direction of phenotypic direction for an
individual to be larger or smaller than a set threshold from the phe-
notype of another individuals. This can be useful, for example, in cases
were only a substantial difference in a certain direction merits some
special consideration or intervention (e.g., in medical scenarios). Using
the formalism developed above, we are interested in the probability
that Prob(y, - y, > ¢), i.e., that y, is not only larger than y,, but is larger

than y, by any magnitude greater than ¢ > 0.

Prob(y; — y,>c¢)=Prob((p, +m) — (p, + 1) >¢€)
=Prob(d+n; — n,>c)=Prob(n' <d — c)

d_c @)
¢ <\/2(1 - r2)>’

when we used the fact that 1, —n, =1 ~ N(0,2(1 —r?)). This
demonstrates the flexibility of the mathematical framework to derive
prediction accuracies to scenarios where the phenotypic difference is
larger than any pre-defined value.

In the Supporting Information we discuss similar derivations for
two more specific cases: comparison of siblings and comparison of
disease phenotypes.

Simulations

To simulate a single pairwise comparison, we sampled n + m effect
sizes from a pre-specified effect size distribution, with signs simulated
to be negative or positive with equal probability. We then computed
the sums A=)"[ e, and D=A+3 """ e, as in the formulation
above. The simulation results in a correct prediction if
Sign[D] = Sign[A], otherwise the prediction is incorrect. For each sce-
nario 10° repeats were simulated.

We evaluated different fractions of known effects out of all
effects: 10%, 50%, and 90%. Effect size distributions can be shaped by
various evolutionary processes, such as mutation, selection, and
genetic drift*”’; therefore, we simulated effect size distributions of
various types (normal distribution in Fig. 2, gamma and Orr’s negative
exponential model distributions**® in Fig. S1). We also considered
the case where the known effects tend to be the larger effects. To
simulate this, we sampled n + m effect sizes from the predefined effect
size distribution, and then sorted the effect sizes in decreasing order,
defining the known effects to be the largest n effects. We then continue
with the rest of the simulation as described above.

Modeling and simulating directional selection. To model directional
selection, we modify the random variables representing the effects to
have positive means. We implement this by simulating n + m effect
sizes e; as before, but we simulate their direction by letting the prob-
ability X; > 0 be p;=1—1e=5, and then X; ~ 2e;(Bernoulli(p;) — ).
Note that s is not a selection coefficient in units of fitness, but is rather a
unitless parameter that is proportional to the impact of selection on
the direction of the effect. The motivation for this particular for-
mulation is based on the Ornstein-Uhlenbeck model, which is used to
model the evolution of quantitative traits subject to both drift and
selection by considering random walks with some pull toward a par-
ticular state®*, Under our model, when s = O or ¢; is very small, then
p; ~ 3, as in the neutral model. As s and e; increase, p; approaches 1,
meaning that the direction of the effect is almost always in the positive
direction.

Analysis of pairwise comparisons in humans

Estimating k from empirical population data. Estimating « for a given
pair of individuals using Eq. (1) requires (i) effect size differences for
known loci to compute A, and (ii) the variance of the sum of the
unknown effects, ¢°. The genotype effect sizes can be ascertained from
summary statistics of large genotype-phenotype datasets (see next
section), from which we can compute the effect size differences (e.g.,
the added effect of one allele to the phenotype), denoted as e;. The
variance of the sum of the unknown effects can be ascertained in
different ways, and here we examine two approaches: (i) estimating the
portion of phenotypic variance not explained by the PGS, and (ii) using
the theoretical expectation of Eq. (2). The first approach uses a stan-
dard PGS statistic, 72, and for the second approach we infer the overall
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contribution of known effects to the variance of phenotypic differ-
ences between pairs, which we denote as r2. The latter is done by
identifying a parameter that best explains observed proportion of
correct predictions using the relationship in Eq. (2) (see next section).
Table S1 shows the comparison of results for # and r2. Below we
denote the variance of the sum of the known effects as %, but in all
cases below r* can be replaced with r2.

We assume that the measured differences in phenotypic values
have been normalized and transformed to z-scores (i.e. the variance of
the scaled phenotypic differences is one). For a pair of individuals, we
can now denote the overall predicted difference A= 3" | e;, where n is
the number of known effects that differ between the two individuals.
To compute the variance of the sum of the unknown effects, we note
that the variance of the true phenotypic difference is composed of the
sum of the variance explained by the known effects, /%, and the var-
iance of unknown effects ¢ therefore, in the standardized units,
0*>=2(1-r*). Using these standardized units, we can reformulate Eq. (1):

_ A
larvaam ®

Analysis of the UK Biobank. To test our approach on empirical data,
we used the UK Biobank (UKB), a large dataset containing almost
500,000 genotyped individuals with associated phenotype data'®. We
compared pairs of individuals with various levels of genetic diver-
gence: (i) sibling pairs with Northwestern European ancestry (within-
family), (ii) pairs of individuals with Northwestern European ancestry
(within-population), and (iii) pairs of individuals where each belongs to
a different ancestry group, among European, East Asian, and African.
Northwestern European ancestry was determined using the UKB Data-
Field 22006. Our non-European groups were defined by demarcating
clusters of genetically similar individuals that are distant from the
European group on the PC1 and PC2 of the UKB PCA results from UKB
Data-Field 22009 (Fig. S6). The two clusters were labeled as East Asian
and African based on the majority of self-identifications of individuals
from these groups as reported in UKB Data-Field 21000. These groups
included 1,794 and 3,091 individuals, respectively.

To compute k values, we first generated GWAS results for a
number of continuous traits: body-mass index (UKB Data-Field 21001);
systolic blood pressure (UKB Data-Field 4080); heel bone mineral
density (UKB Data-Field 3148); standing height, referred to as “height”
(UKB Data-Field 50); hip circumference (UKB Data-Field 49); and basal
metabolic rate, referred to as “metabolic rate” (UKB Data-Field 23105).
We included variants with high-quality imputation scores (imputation
INFO scores >0.8) from the UKB imputed genotype release version 3';
this yielded roughly 30 million variants. The discovery dataset inclu-
ded individuals with Northwestern European ancestry, excluding
20,000 (10,000 female, 10,000 male) individuals as a validation sub-
set. We generated single-variant association results using SAIGE
v1.1.6.3"2. We used 280,628 markers to fit the null linear mixed model,
and age, sex, and the first ten genetic PCs as covariates. To generate
PGS, GWAS results were filtered with a fixed P-value threshold of
P-value<0.01 and minor allele count threshold of MAC>20. We used
PRSice-2 to prune variants for linkage, and compute PGS for all
individuals®’. PRSice-2 is widely used for computing PGS, and was
chosen for this reason (alternative approaches, such as DBSLMM or
MegaPRS, may increase performance;***’). We used standard para-
meters for pruning linked variants (250kb maximum distance between
variants and a r* threshold of 0.1), but did not fit the p-value threshold
for variants, and instead selected a fixed threshold of 0.01 for all PGS.
We used this basic setup to ensure that our results are not biased by
the method or parameter choice, rather than attempt to increase
prediction accuracy by optimizing the method and parameter choices.
k values were computed for all same-sex pairs from our validation
subset as detailed above in Estimating k from empirical data. For each

pair, we compared the sign of the PGS difference and the true direction
of phenotype difference as reported in the UKB.

To estimate r2 (our new approach for estimating 1, see above) for
each phenotype in each dataset, we fit the empirical data to the the-
oretical expected relationship of k and P (Eq. (4)). For this analysis, we
set aside a subset of samples from our validation subset (an “inference”
subset). The inference subsets included n = 10000 for Northwestern
European ancestry, n =10000 for the siblings analyses, n = 897 for East
Asian ancestry, and n = 1545 for African ancestry. Using the inference
subset, we evaluated the relationship of x and P using Eq. (8) by
identifying the r* value (which we denote as r2) that minimizes the sum
of absolute distances between the proportion of correct predictions
for each bin and the theoretical expectation, weighted by the number
of comparisons per bin (Table S2). We then use this r2 value to com-
pute the k values in separate validation subsets. These validation
subsets included n = 10000 for Northwestern European ancestry
analyses, n = 11194 for siblings, n = 897 for East Asian ancestry and
n = 1546 for African ancestry.

PGS are known to have poor transferability between genetically
distinct populations. To test the effect of PGS transferability on our
model fit, we used the PGS from the European ancestry group in Yengo
et al.” to evaluate our predictions in non-European pair comparisons,
using the ancestry subsets indicated above (1794 individuals with East
Asian ancestry for EAS-EAS comparisons, and 3091 individuals with
African ancestry for AFR-AFR comparisons), relative to our pairwise
predictions in the European group with the same PGS (20,000 indi-
viduals for EUR-EUR comparisons). Note that in the EUR-EUR com-
parisons the Yengo et al'” PGS included the tested individuals.
Although these individuals constitute a very small portion of the
overall European population analyzed in this study this may resultin an
inflation of PGS accuracy estimation*®, but because the European pair
analysis (light brown in Fig. 3¢c) serves as a baseline for comparison
with the East Asian pairs and African pairs analyses (dark brown and
green in Fig. 3¢, respectively), this effect will only lead to an under-
estimation of the transferability of our approach. In addition, the
European pair analysis with the Yengo et al”” PGS (light brown in
Fig. 3¢) can be directly compared to the results from our non-inflated
UK Biobank PGS (magenta in Fig. 3c). One direction in which predic-
tions can perhaps be improved in our pairwise evaluation setting is to
consider the admixture profiles and relatedness of the compared
individuals when calibrating the effect sizes for ancestry. Such cali-
brations would need to be considered differently when conducting
within-population or between-population comparisons.

We also generated predictions for a number of common diseases
reported in the UKBB according to the following ICD10 codes: asthma
(J45), type 2 diabetes (E11), hypertension (I110) and hypothyroidism
(E03). ICD10 codes were retrieved from UKB Data-Field 41270 (diag-
noses). For each disease, we generated single-variant association
results using SAIGE2** for binary traits with default parameters. The
discovery dataset included individuals with Northwestern European
ancestry (as defined by UKB Datafield 22006), excluding 10,000 sam-
ples, 5000 controls and 5000 cases, as a validation subset. PGS were
generated and k estimated as for the continuous traits. For each case-
control pair, correct prediction was recorded whenever the PGS for the
disease risk was higher in the case individual. To examine our result for
hypertension, for each «k value bin, we evaluated the proportion of
individuals designated as controls that are reported to use anti-
hypertensive medication (UKB Data Field 6177).

Analysis of population and species datasets

To evaluate our approach in cases where the compared genomes are
highly diverged, we examined datasets from several species. In all of
these analyses, we took genotype-to-phenotype data as reported in the
original studies. The first three comparisons were based on QTLs,
which were detected by analyzing admixed populations. Then, these
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QTLs were used to predict the direction of phenotypic change evaluate
the phenotypes of the original (non-admixed) populations. In the
stickleback QTL mapping dataset”, we compared a marine population
(treated in our analysis as the phenotyped population) and four
freshwater populations (treated as unphenotyped). The compared
populations likely diverged less than 12,000 years ago”. We investi-
gated 27 morphological phenotypes (measurements of shape land-
mark coordinates), resulting in four pairwise comparisons of 27
phenotypes. Because not all phenotypes had significant QTLs in each
population, some of the comparisons (three out of four populations)
included fewer than 27 predictions (Fig. 4c). Here, because the raw
data was not available, we could not exclude the compared individuals
when computing effect sizes; however, because these loci are largely
fixed between the populations, this is not expected to affect the
results.

In the mouse QTL mapping dataset®, we compared a wild-derived
inbred laboratory house mouse strain and the Gough island house
mouse subpopulation. These populations diverged in the 19 century.
Two phenotypes (weight and growth rate) were measured across
16 weeks, resulting in a pairwise comparison of 2 x 16 phenotypes. We
then computed average prediction accuracy across the 16 time points
for each of the two phenotypes.

In the daisy QTL mapping dataset’, we compared two daisy
species (Senecio aethnensis, and Senecio chrysanthemifolius) that have
likely diverged within the last 176,000 years (Brennan et al., 2016). For
one phenotype out of 13, a prediction could not be made because the
sum of the known effects was 0.

The Neanderthal and chimpanzee datasets® included compar-
isons of DNA methylation maps between modern humans (treated as
the phenogyped population) and Neanderthals and chimpanzees.
Because these analyses do not contain effect sizes, they were limited to
phenotypes for which the loci with the largest differences in methy-
lation levels showed unidirectionality (likely resulting in high A values,
and therefore high « values). These analyses predicted the phenotypic
direction for 33 Neanderthal phenotypes and 22 chimpanzee pheno-
types. We list here the prediction accuracy as reported in ref. 6.

Statistics and reproducibility

No statistical method was used to predetermine sample size. No data
were excluded from the analyses; The experiments were not rando-
mized; The Investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The human data analysis was conducted using data from UK Biobank,
a major biomedical database, UK Biobank project ID 26664. The
mouse data was taken from Table 2 and Table 3 of Gray et al. (2015)*.
The daisy data was taken from Table 1 of Brennan et al. (2016)*. The
stickleback data was taken from Table 1 and Table S1 of Rogers et al.
(2012)*. The Neanderthal and chimpanzee data was taken from
Table S4 of Gokhman et al. (2019)°.

Code availability
The code used for analysis in this study is available at: https://github.
com/Greenbaum-Lab/kappa_ukb.
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